
Computing in Context

An Introduction to Computer Science & Programming for Nonmajors

Document Contents

Chapter 0: Introduction and Review

Chapter 1: What is Computer Science?

Chapter 2: Writing Algorithms

Chapter 3: Welcome to Python

Chapter 4: Python Essentials I

Chapter 5: Python Essentials II

Chapter 6: Python Essentials III

Chapter 7: Files and JSON

Chapter 8: Introducing Python Libraries

Chapter 9: Pandas

Chapter 10: Numpy

Chapter 11: MatPlotLib

Chapter 12: Conclusion

Chapter 0: Introduction and Review

Hello everyone and welcome to COMS 1002 Computing in Context, I will

be one of your Teaching Assistants for the duration of the semester.

My name is Griffin and I will be writing this guide today! Please

note that this should be used as a supplement to the lectures, while

I will ideally cover everything relevant in this document, I am going

off memory of assisting last fall so some things I will miss. There

are plenty of contexts so I will not be covering this course from a

context specific manner, in fact this document will be more like if

you took ENGL 1006 Intro to Computing for Engineers and Applied

Scientists, but more toned down to what would be expected of you.

That being said, there is some things you should be comfortable with

and aware of as you begin this course, this especially true for those

who intend to do the economics track so I am just going to list those

topics and whenever you have the free time you may go and review

these topics if you feel it necessary:

1. Solving Linear Equations

2. Properties of Exponents (Specifically relating to powers of 2)

3. The Powers of 2: 1,2,4,8,16,32,64,128,256,512,1024

4. Summations (Σ) (economic specific I believe)

5. Basic Probability Theory (you will be taught what you need to

know if/when it is necessary but just in case you want a head

start)

6. Time Management Skills: chances are the skills you had in high

school if you are a first year student won’t cut it in college

(believe me you’ll get swarmed real quick) be sure to start

assignments early

Be sure to attend lectures and ask any questions you have on ED!

Chapter 1: What is Computer Science?

I’ll start with a synopsis and then go more in depth. Computer

Science is the study of algorithms and their properties. Think of it

like this, what is the process for eating food everyday, well to put

it in simplest terms possible there are really three steps to eating

food:

1. Acquiring the food

2. Eating the food

3. Cleaning up your mess

For now I will refer to this as a routine, but it really is just

synonymous with an algorithm. It is possible that within a routine

there are subroutines. For example there may be a subroutine in your

quest to acquire food. When we consider the properties we primarily

consider its time and space complexities as its primary properties,

along with the inputs and outputs. We will only focus on the

inputs,outputs, and the time complexity. Discussing the inputs and

outputs is easy, if we consider our routine a giant black box then we

get the following diagram:

Image 1: A diagram representing the inputs and outputs of an algorithm

This will become more clear later but keep this image in mind when we

discuss writing algorithms in the next chapter. The time complexity

essentially means approximately how long does it take to run? We

typically use Big-O notation to represent this kind of information,

if we wanted to demonstrate something that runs in linear time then

we would write O(n) where n is the size of our input. The smallest

possible complexity is O(1) this means that regardless of the size of

the input the algorithm runs in the same amount of time. In a perfect

world all algorithms would be O(1) but this is not the case and

actually there are some problems that do not even have polynomial

time solutions either. We won’t concern ourselves with that concept

for now but we will now transition ourselves to writing some

introductory algorithms, first in pseudocode and later on in python.

Chapter 2: Writing Algorithms

Let’s start with the simplest algorithm possible, say we have a

collection of items, let's call this collection of items A, say that

the following is true:

A = {3,2,6,1,9,4}

Now say we wanted to determine if a particular integer with the value

x was present in our collection. Well we have a pretty simple

solution to this problem, we can just search through the collection,

A, item by item and see if our item x is present, if it is we can

either return true to denote the item is in the collection or its

position in the collection. I will choose the latter approach for

this. This algorithm is known as linear search. We can write this

algorithm which is a healthy mix of actual code and English, we will

follow a python-like pseudocode with the exception that in

pseudocode, indexing starts at the value 1.

def linear_search(A, x):

idx = 1

list_size = length(A)

while(idx <= list_size):

if(A[idx] is x) then :

return idx

otherwise:

idx = idx + 1

return -1

The traditional choice is to return -1 whenever the item is not

present in the collection. As we can see we start a variable at the

value of one and go until we are out of elements to look through that

is what the loop is doing inside the loop we check to see if the item

at the current position of the collection is the element we want then

we return the position we found the element at, otherwise we increase

the position by 1.

Perhaps from the name of the algorithm it can be implied that the

algorithm grows linearly, when it comes to searching for elements we

can do better if we make a certain assumption. Let's assume that the

collection is already in ascending order. So take our initial

collection A and sort it yielding the following collection:

A = {1,2,3,4,6,9}

Now we can take advantage of the collection by starting in the middle

and effectively chop off half the collection with each iteration

depending on the value x we are looking for. Consider the following

algorithm:

[Continue To Next Page]

def binary_search(A, x):

begin = 1

end = length(A)

while(begin <= end):

mid = begin + (end - begin)//2

if(A[mid] is x) then :

return mid

if(A[mid] > x) then:

end = mid - 1

otherwise:

begin = mid + 1

return -1

A lot of this looks similar to the linear search example, except this

time we use three values to keep track of the effective state of our

algorithm. We use “begin” and “end” as two markers that indicate the

beginning and end of our effective array. Let’s run through an

example where the value we are looking for is not in the list to show

off the entire algorithm. Say we want to find x = 10

A = {1,2,3,4,6,9}

^ ^

b e

We start by calculating the midpoint which would be 1 + 5//2 = 3:

A = {1,2,3,4,6,9}

^ ^ ^

b m e

We see that x is greater than 3 so we move our b marker one position

past the m pointer and continue and repeat

A = {1,2,3,4,6,9}

^ ^ ^

b m e

Same thing again 10 is greater than 6 so we move the b marker one

position past the m pointer and continue and repeat

A = {1,2,3,4,6,9}

^

b/m/e

We see for a final time that 10 is greater than 9, at this point b >

e meaning the loop ends and we return -1 as the result.

As we can see binary search chops the effective collection in half

each time, meaning that the algorithmic complexity is logarithmic

(since logn is the opposite of 2n) in the realm of Computer Science

all the following terms are equivalent: lgn = logn = log2n

Those two algorithms - linear and binary search - were a subset of

algorithms known as search algorithms, we will now move on to sorting

algorithms in this case two: Selection Sort and Insertion Sort. To

summarize these algorithms up quickly, selection sort selects the

smallest element in the collection and swaps it with the current

element you are on (starting from the first and ending on the last).

Insertion sort effectively divides the collection into a sorted

partition and an unsorted partition, it inserts the current element

in the unsorted partition into its proper position in the sorted

partition thus with each iteration the sorted part grows and the

unsorted part shrinks.

Here we show off the pseudocode algorithms for the two sorting

algorithms:

def selection_sort(A):

for each item x in A:

min = x

for each item y in A:

if(y < x) then:

min = y

swap(x,min)

def insertion_sort(A):

for i in range(2, length(A)+1):

copy_elm = A[i]

j = i - 1

while(j >= 1 and copy_elm < A[j]):

A[j+1]=A[j]

j = j - 1

A[j+1] = copy_elm

If you read the descriptions I provided above then this should make
some nice sense to you but in case it doesn’t let’s quickly run them
down.

Selection Sort: We iterate through each item in the collection one
main time and then for each item we repeat that loop, doing this
allows us to properly compare the elements in hopes of finding the
smallest element, by the end of that inner loop we know what the
smallest element is and then we perform a swap before moving on in
the outer loop. For those who are still confused, here is a nice
visualization of the algorithm (Selection Sort visualize | Algorithms
| HackerEarth)

Insertion Sort: Starting with the second element in the collection we
will continually swap with preceding elements until the collection is
sorted, for each preceding element this occurs. If you would like to
see a visualization of this algorithm follow this link (Insertion
Sort visualize | Algorithms | HackerEarth)

Now that we have covered the basic searching and sorting algorithms
we can now formally introduce Python. A lot of this will look quite
reminiscent of the pseudocode we have been writing for the last
little bit, and that was done intentionally to help ease into it!

https://www.hackerearth.com/practice/algorithms/sorting/selection-sort/visualize/
https://www.hackerearth.com/practice/algorithms/sorting/selection-sort/visualize/
https://www.hackerearth.com/practice/algorithms/sorting/insertion-sort/visualize/
https://www.hackerearth.com/practice/algorithms/sorting/insertion-sort/visualize/

Chapter 3: Welcome to Python

Now we can finally start some actual programming! We will start by
writing a simple but an absolute classic program. After setting up
your programming environment you should be able to open some IDE of
your choice and type the following in your editor:

print("Hello World!")

This introduces us to two things in python:
1. Prebuilt Functions
2. Prebuilt Data Types

We will be writing user-defined functions and types later but for now
we will stick to the prebuilt ones that help us get what we need
done. In this case print is the function and "Hello World!" is the
argument which is of type str. We can’t continue programming by using
hard coded values so now we will introduce variables take the
original program we wrote above, we can add variables to it easily:

some_text = "Hello World!"

print(some_text)

The first line initalized the some_text variable to the string “Hello
World!” and then we subsequently printed it out, well we are able to
reassign variables and change their values like so:

some_text = "Hello World!"

print(some_text)

some_text = "Today is a wonderful day!"

print(some_text)

If you plug this into the editor and run the code you should see the
statements appear on separate lines. There are plenty of different
types of variables, we have seen Strings but there are also integers,
floating point numbers, booleans and more here are some examples of
these types:

my_int = 4

my_float = 3.14

my_str = "1002"

my_bool = True

Those are the four basic types and the main types you will be working
with throughout the semester. Now that we know about the built in
types, how about we talk about some more built in functions.

We can convert between types with the proper associative function,
for example we can turn my_int into a float with the following:

my_second_float = float(my_int)

print(type(my_second_float))

We can also use functions like: int(x), str(x), bool(x) and others to
do what you can probably guess they do by now. The type(x) function
simply returns the type of x, in the case of the code above that will
be float.

Finally - for now at least - we need to talk about the input(x)
function. Taking in user input is an important part of writing
programs, especially in this context (hehe what a fun pun) the
following program asks a user to input how many days are in a week:

days = input("How many days are in a week? ")

print(days)

There is one important detail to mention here, the type of days is
actually a string, if we attempt to perform any mathematical
operation then we will receive an error from the Python Interpreter.
If we wish for the type of days to be an integer for example then we
can do so by adding on this tiny bit of code

days = int(input("How many days are in a week? "))

print(days)

In the next chapter we will discuss these mathematical operations and
others that allow us to manipulate our variables in new and fun ways!

Chapter 4: Python Essentials I

An essential part of Python is to perform mathematical operations. We
have the basic cardinal operations (+ - * /) There is however more
details than meets the eye, take the ‘/’ symbol. If we perform the
operation 5 / 2 we will get 2.5 however if we perform the operation 5
// 2 then we will get 2. The singular backslash represents floating
point division while the double backslash represents integer
division.

Other programming languages tend to make exponentiation a convoluted
process to tackle. In Python we are fortunate to have the ** operator
to perform exponential operations like 5 ** 2. Finally we have the %
operator. To put simply a % b gives the user the remainder of a
divided by b so 5 % 2 gives us 1. There are more in-built
mathematical operations that you can learn more about on your own and
some may even be mentioned in lecture but to get you started you can
look here: (Python Math (w3schools.com))

Now we get to some of the more formal programming structures in
Python. Prior to continuing it is important to learn about boolean
expressions. Earlier we discussed briefly the data type bool in
Python but now we go more in depth. A Boolean expression is any
expression in Python that evaluates to True or False take the
following expression into consideration:

x == 5

If we assume there is a variable named ‘x’ that is of an integer type
then the expression is valid the expression either evaluates to True
(when x equals 5) otherwise it evaluates to False. We will be using
these boolean expressions for conditional statements on our
conditionals and some of our loops which is why you need to know
about them and how they work. We can combine multiple boolean
expressions into more complex expressions using the ‘and’ and ‘or’
keywords. With ‘and’ the expression evaluates to True if and only if
both expressions surrounding the ‘and’ are True. With ‘or’ the
expression evaluates to True if at least one of the expressions is
True.

Knowing this we can now discuss conditionals, to put it simply, a
conditional is a block of code that will only execute if the

https://www.w3schools.com/python/python_math.asp

condition is True. Imagine we are looking to describe a student’s
letter grade in some course, we can use the following code to do
this:

grade_average = 86

if(grade_average >= 90):

print("A")

elif(grade_average >= 80):

print("B")

elif(grade_average >= 70):

print("C")

elif(grade_average >= 60):

print("D")

else:

print("F")

We can see that the basic conditional has an initial condition
surrounded by the if keyword we then use the colon to indicate that
we are opening a new code block and then inside that code block
(which is indented by one level) we describe what we wish to do. If
we want to add more conditionals and we desire only for one of the
conditionals to execute we can wrap the other conditions in elif
(also known as else if in other languages) if we wish to just have
some action not be dependent on a specific condition and we wish to
treat it is as a sort of final option we can use else like you see
above. It is important to note that you are able to have some of
these components on their own or without others the following are
valid subsets of the above that you can legally do without having an
interpreter error:

if -> elif -> else
if -> elif
if -> else

if

Any other configuration that you attempt to write will not be
accepted. This is will be the end of my discussion of conditionals
but Python does allow for match-case statements as well you can read
about those here: (Python Match-Case Statement - GeeksforGeeks)

https://www.geeksforgeeks.org/python-match-case-statement/#

We continue onward to discuss loops. Loops allow us to repeat blocks
of code for a certain number of iterations or until a predetermined
condition is reached. For purposes of 1002 there are only two kinds
of loops we should concern ourselves with, the while loop and the for
loop. The while loop continues executing a block of code until the
defining condition is reached. Say I wanted to print the even numbers
in the range [1,100] I can do that in the following two ways:

number = 1

while(number <= 100):

if(number % 2 == 0):

print(number)

number += 1 #logically equivalent to number = number + 1

number = 2

while(number <= 100):

print(number)

number += 2 #logically equivalent to number = number + 2

These code segments demonstrate that there are multiple ways to

achieve a desired goal with your code along with the standard

functionality of a while loop. Take note at the last line in each

loop, please do not let that syntax confuse it, that is a kind of

compound assignment operator which allows me to write the equivalent

expression in the comment more succinctly. (If I seem to be more

brief on a subject than you wish please do not worry as my weekly

lecture notes will be more in depth since I will be covering these

topics again anyway)

Now all that is left to discuss is the for loop, there are two

different kinds of for loops in Python. I will touch on the first

kind in this chapter but I will bring up the second one in the next

chapter when we discuss lists as they are linked together quite

nicely.

We are able to loop through a series of numbers in the following way,

I will first give it to you generically and then following it up with

an example:

for i in range(start, end, step):

//some code

You are permitted to omit the start and step parts of the range; this

will simply just default step to 1 and start to 0. It is important to

note that the range is exclusive, meaning that i will be able to

represent values in the range [start, end) rather than [start,end]

which you may have expected. Consider the following example, say we

wished to print all values x that are multiples of 3 in the range

[1,100]. You could use a while loop like we discussed earlier or you

can make use of the for loop which will allow us to write even less

lines of code:

for x in range(3, 100, 3):

print(x)

See in just two lines of code we did the task that was asked of us

whereas with a while loop the same task would’ve taken twice as many

lines of code. Here is a fun little challenge for you to try to see

if you are understanding these loops, create a program that prints

even numbers in the range [1,100] but you need to start at 100 and

work backwards, do this with both a while loop and a for loop!

Chapter 5: Python Essentials II

Now that we have covered the basic control and looping structures in
Python, we can now move on to some basic data structures in Python
that are necessary to know moving forward. Say we wish to store a
bunch of variables, well we could do that by declaring a bunch of
variables and then assigning them values whenever we need to and then
use them for future operations but this is inefficient and will
simply clutter up your code. Here we will introduce lists, there are
two ways to create lists in Python and they are shown below:

my_first_list = ["hey", 1002, "is", "cool", True]

my_second_list = list(("this","is","not", 1004))

The first method uses the standard bracket notation to contain the
items of our list while the second uses the list constructor to
create a list. In order to access elements of the list we use the
list name along with the bracket notation sandwiching the index we
want. In Python, indexing begins with 0. The following are all valid
ways to get indices for the first list:

print(my_first_list[0]) #get the first element

print(my_first_list[len(my_first_list)-1]) #get the last element

print(my_first_list[-1]) #also gets the last element

We can append elements using the append(x) method and we can remove
elements using the remove(x) method. As shown in the example above we
can get the length of a list using the len(x) function there are
plenty of other things you can do with lists in regards to these
methods which you can explore more and read about here (Python Lists
(w3schools.com)) to summarize lists though, list items are ordered,
changeable, and allow duplicate values.

Now that we know about lists, we can revisit the for loop and discuss
the second kind of for loop that Python has to offer, say we only
desire to view the items within a list and we do not care for the
position of that particular item. Well Python offers an easy way to
do this, consider the following code segment:

https://www.w3schools.com/python/python_lists.asp
https://www.w3schools.com/python/python_lists.asp

my_watch_list = ["Suits", "The Wolf of Wall Street", "Silicon Valley",

"Demon Slayer"]

for x in my_watch_list:

print(x)

This for loop simply iterates through the collection of items and

prints them out if we use the previous type of for loop we would have

done the following:

for x in range(len(my_watch_list)):

print(my_watch_list[x])

See this way involves a lot more typing but the job gets done but

just look at how neater the first approach is. This offers a new way

of creating lists, consider our initial watch list from above and say

we desire to have a new watch list containing entries in the original

that have titles longer than 5 characters. Well we are able to do

this using stuff we have already learned:

new_list = []

for x in my_watch_list:

if len(x) > 5:

new_list.append(x)

This is easy to understand but it requires a decent amount of code,

here is an alternative approach using a concept known as list

comprehension:

new_list = [x for x in my_watch_list if len(x) > 5]

This code contains 4x less lines as the previous example, is still

reasonable enough to read and completes the same job as the previous

code segment. You will most likely be asked to perform a task

throughout the course that asks you to utilize list comprehension,

the syntax varies slightly depending on the exact conditional you

wish to use so I urge you to read more on the subject here: (Python -

List Comprehension (w3schools.com)).

Diverting away from these concepts real quick we need to discuss how

we organize our code, up to this point we have simply just written

code on the console and executed it as we please without any extra

effort. Well moving forward we will be writing user defined functions

to contain the code we write, a major benefit of this is that if we

need to run the same segment of code in multiple places we are able

to do that without rewriting the code. To do this we will use the

following format:

def my_function(param_1, param_2):

#some code

#example

return param_1 + param_2

All of our functions will follow this format, the keyword ‘def’ then

the function name and after an opening parenthesis we will have an

parameter list, which could contain nothing but in the example above

contains two parameters with each parameter separated by a comma.

Once we finish the parameter list we put a closing parenthesis and

then a colon and then indent the following lines we wish to associate

with the function. Any variable we define within the function does

not exist outside the function, this is known as scope. Specifically

when we define a variable within a function that variable has local

scope with respect to that function. Variables declared outside your

https://www.w3schools.com/python/python_lists_comprehension.asp
https://www.w3schools.com/python/python_lists_comprehension.asp

functions have global scope meaning you can reference them from

anywhere.

Going back to actual Python we will wrap up this chapter with

discussions on Tuples and Sets. Beginning with Tuples, they are

essentially immutable lists, once we create a tuple we cannot add or

remove elements from it but we are able to modify them if we so

choose. Consider the following code segment that demonstrates Tuples:

def my_tuple_creator(a,b,c):

my_tuple = (a,b,c) # = tuple(a,b,c) is equivalent

return my_tuple

This code demonstrates how we can create tuples, we can modify the

values in the same way as we do for lists since both are indexed,

whenever we want to return multiple values from a function we are

really returning a tuple. This leads to a concept known as unpacking,

where we can automatically assign values from a tuple (or list but it

is more relevant here) without doing the extra work, if it is not

obvious from the example below then convince yourself that the two

implementations are equivalent:

a,b,c = my_tuple_creator(x,y,z) #asssume x,y,z exist somewhere

#here is the alternative

t = my_tuple_creator(x,y,z)

a = t[0], b = t[1], c = t[2]

The first of these two options is much cleaner than the second. All

operations that apply to lists apply to tuples as long as you aren’t

attempting to mutate the tuple. To read more about tuples view the

following resources: (Python Tuples (w3schools.com))

https://www.w3schools.com/python/python_tuples.asp

Finally for the chapter we get to sets, which are unordered lists

which can only contain distinct elements. You are able to add and

remove items from sets but the items themselves cannot be changed

once you add them. We can visualize sets with the code below:

def my_set_creator(a,b,c):

my_set = {a,b,c} # = set(a,b,c) is equivalent

return my_set

Sets are not indexable so you have no idea which element will come in

what order as it is not guaranteed to be the same order as which you

created it. An important thing to consider is that in Python what

sets consider as duplicates may not be what you think, for example

True and 1 would be considered duplicates despite being completely

different types. For more reading on Python sets please see the

following resource: (Python Sets (w3schools.com))

The following table shows important functions/methods and which data

structure(s) they could be applied to

Function/Method Description Data Structure

len(x) Returns the length of
x

Lists, Tuples, Sets

append(x) Appends x to the end
of the collection

Lists

remove(x) Removes x from the
collection

Lists, Sets

add(x) Adds x to the
collection

Set

Next chapter we will discuss Strings, dictionaries and classes in

Python.

https://www.w3schools.com/python/python_sets.asp

Chapter 6: Python Essentials III

We briefly discussed Strings in an earlier chapter when discussing
Python’s built in data types. There is actually more to it than other
data types which is they are getting their own little section.

We can make Strings with either the double quotes like this: “hello”
or with single quotes like this: ‘world’ if you need a String that
spans multiple lines you will use three quotes take the following as
an example:

message = """I hope you are finding this guide useful,

your feedback will help make this guide for future

iterations of 1002, congratulations for making it

this far, you are about halfway through!"""

print(message)

This is much neater and an overall better coding practice than simply
putting the quote message in the print statement.

Another common thing with String formatting is the use of String
interpolation commonly known as “f-strings” this allows us to create
more modular and dynamic Strings in Python. Say we want to print a
message to a user upon entering our system. Let’s assume we have the
user’s name stored in a variable appropriately named ‘name’ we can
use f-strings to format the string as follows:

name = "Griffin"

print(f"welcome to your dashboard {name}.")

The label you put inside the curly braces must match the variable
name you wish to associate with. To learn more about “f-strings”
please view this resource: (f-strings in Python - GeeksforGeeks)

Going back to regular details about Strings, we are able to index
them like we can with lists since a String effectively is a list of
characters, we are actually able to iterate through the individual
characters using a for loop:

https://www.geeksforgeeks.org/formatted-string-literals-f-strings-python/#

for letter in "Computing in Context":

print(letter)

Trivially, we can replace the String literal with a variable for
convenience. Finally we can also use the len(x) function to determine
the length of a String. To read more about Strings and their
properties and operations you can perform please view the following
resource: (Python Strings (w3schools.com))

The final data structure we will talk about is the dictionary (also
referred to as a HashMap in other languages) besides this data
structure being the literal god sent for technical interviews (when
in doubt use a hashmap is the saying there) dictionaries are very
useful for storing related pieces of information. Saying we needed a
quick and efficient way to find the location of a particular product
in a warehouse knowing just a product id (assuming the necessary
backend already exists). Well we could use a list or other such data
structure but the access time is on the order of O(n) so for a
warehouse storing millions of items, this is costly. Dictionaries
have O(1) access time assuming we know the key. This is their main
benefit. The following demonstrates how we can use and modify a
dictionary:

my_list = [1,3,7,4,2,9]

target = 5

"""

Say our goal is to find a matching set of unique values

from the above list that is equal to the value of target.

For simplicity let's assume there is always a valid solution

in particular we want the indices of those values.

"""

my_dict = dict() #using {} also works too

for i,x in enumerate(my_list):

if(x in my_dict):

return (i, my_dict[x])

else:

my_dict[target-x] = i

https://www.w3schools.com/python/python_strings.asp

The above code maps the difference between the target and the current
value to the position of the current value. The reason we map the
difference is because if we find the difference later in the list we
know we have a matching value and thus a valid solution. To go
further (and also to demonstrate the format of a dictionary) let’s
walk through the example I have hard coded above:

my_list = [1,3,7,4,2,9]
target = 5

my_dict = {}

We now loop through my_list and update the dictionary as follows:

my_dict = {4:0}
my_dict = {4:0,2:1}
my_dict = {4:0,2:1,-2:2}

We see that 4 is contained within the dictionary already so we return
the current index along with the index stored with the key 4.

Also if you are curious, that is what enumerate does: it allows
access to both the index and the element within a collection (the
more you know).

For those of you who either have friends who major in Computer
Science, or plan to major in it yourself you might be able to
recognize this problem. This is the famous Two Sum problem that is
the first problem many aspiring software engineers (including myself)
solve on a site called leetcode, which is what enables us to practice
for technical interviews. If you have no idea what I am talking about
then bless you. While dictionaries are not traditionally indexed from
0 to len(dict)-1 they do allow for us to use the bracket notation we
see with lists and the likes but instead of providing the index we
provide the key. You see me use this notation for assignment and
accessing in the code fragment above. If you wish to learn more about
dictionaries then please view this resource: (Python Dictionaries
(w3schools.com))

https://www.w3schools.com/python/python_dictionaries.asp
https://www.w3schools.com/python/python_dictionaries.asp

Python is an object oriented programming language, I personally do
not ever use it as such but alas it is. What this means is that we
are able to create our own data types! In reality more people call
these objects but they are effectively custom data types. We use the
class keyword to denote the beginning of a class:

class Coordinate:

x = 10

y = 02

We can now use this class to make objects as follows:

point_one = Coordinate()

print("The X position is: ", point_one.x)

print("The Y position is: ", point_one.y)

Of course this is quite specific; we want our Coordinate objects able
to represent more than one coordinate pair. This is where we
introduce constructors, denoted as __init__(x) it is always executed
when we create objects and it is where we can define the object’s
attributes, consider a refined Coordinate class:

class Coordinate:

def __init__(self, x, y):

self.x = x

self.y = y

def __str__(self):

return f"The Coordinate is: ({x}, {y})"

def distanceFromOrigin(self):

return ((self.x**2 + self.y**2)**0.5)

def setCoordinateX(self, x):

self.x = x

def setCoordinateY(self, y):

self.y = y

def getCoordinateX(self):

return self.x

def getCoordinateY(self):

return self.y

This is looking much more complex now. I used the __init__(x) method
above to initialize the attributes of our Coordinate object. We need
to use the self keyword in any definition within the class as the
object is also a parameter to its own functions and methods. The
__str__(x) method returns a string that represents the object, if we
attempt to print any instance of the object this function will
implicitly be called.

Next I defined a method that calculates the distance between the
coordinate and the origin. I then followed this by some mutator
methods (methods that alter the object’s attributes) and finally some
accessor methods (methods that return the object’s attributes to the
user) now we can use this updated class:

point_two = Coordinate(10, 4)

print(point_two)

print(point_two.distanceFromOrigin())

print(point_two.getCoordinateX())

print(point_two.getCoordinateY())

point_two.setCoordinateX(20)

point_two.setCoordinateY(2)

print(point_two)

print(point_two.distanceFromOrigin())

print(point_two.getCoordinateX())

print(point_two.getCoordinateY())

You may have noticed that I have been using the terms ‘function’ and
‘method’ but these terms are not interchangeable. A method is any
function that belongs to a class, while a function doesn’t belong to

a class. A better way to distinguish between them is when we call a
function it is of the form function(x) while when we call a method it
is of the form someObject.method(x)

This distinction is not really a big deal, no one will penalize you
for using them interchangeably unless it is on an exam or during a
technical interview and you are directly asked. Knowing how to build
classes is useful for designing scalable code, like I said earlier I
personally do not use Python as an object oriented language (in the
sense that I do not make my own custom data types). I reserve that
right to Java, my personal favorite language and if you end up
wanting to major in Computer Science you’ll need to take COMS 1004
which is a course kind of like this but in Java.

There is much more to learn in regards to Object Oriented principles
in Python, some of which is out of scope for this course, to be
honest I do not even remember if classes and objects were covered in
1002 last Fall. If they were not then you do not need to concern
yourself with this unless you want to, if you want to learn even more
than I have just described here please view the following resource:
(Python Classes (w3schools.com))

That wraps up the essentials of Python too, using this guide and a
combination of the resources I have been leaving along the way
(Thanks w3 and GeekForGeek) at this point you have a solid enough
footing in Python to do any of the contexts you wish, while the next
chapter is also relevant to all sections - I believe it is the last
thing covered prior to becoming context specific for the rest of the
course - it only expands on the essentials and just opens a new
pandora’s box of things to discover in Python. I recommend people
from any context to read through Chapter 8 and after that you can
pick and choose what remaining pieces of this text you wish to
consume, as I mentioned in the beginning I am modeling this guide
after the content from 1006 since that is what I have access to
directly (as well as the only introductory Python course to keep such
records available) and that course still has a few more important
topics to cover.

At this point though, you should definitely be equipped to handle the
first set of homeworks and a significant amount of content needed for
the midterm exam in October.

https://www.w3schools.com/python/python_classes.asp

Chapter 7: Files and JSON

Up until now we have been working solely within the confines of our
own file space, now we are going beyond that and working with other
files within our own file space.

First it is important to make sure that the file you wish to open is
contained within the same directory as your current file, for example
if you have a folder with all your Python files you’ll need to put
any other file you wish to open in that folder as well. We can use
the following code to read from a file:

my_file = open("somefile.txt", "rt")

for line in my_file:

print(line)

Whatever the contents of that file were, they should now be displayed
where you have been seeing output this entire time. The second
argument we passed to the open function means “read text” which is
the default so if this is all we desired to do we could’ve omitted
it. Once we are done with a file we can close it use the close()
method.

If we wish to append to a file, we would use “a” or “at” if we wish
to overwrite the file we would use “w” or “wt” (you can pretty much
omit the second character unless you wanna work with binary in that
case use “b”) We can use the write method on a file in order to write
to a file so let’s assume the file I use is blank but exists and is
within the directory.

my_file = open("someotherfile.txt" "a")

for i in range(1,101):

my_file.write(str(i) + "\n")

my_file.close()

If we opened the file again for reading we should see the numbers 1
to 100 each on their own line within the file.

For the purposes of 1002, that pretty much sums up what you’ll need

to know in regards to file handling, below is a chart of all the
different string arguments you can use with the open function and
what they do as a helpful tooltip:

Argument Description

“r” Allows for you to read the file

“w” Allows for you to write to the
file but overwrites the file in
the process

“a” Allows for you to write to the
file and appends whatever you
write to the end of the file

“x” Allows for you to create a file
of the given file name

If you want to learn more about Files in Python please view the
following resource: (Python File Open (w3schools.com))

Now we will introduce you to your first Python library. JSON is a
syntax for storing and exchanging data and is text, written with
JavaScript object notation. Some of you may go on to use JSON in your
day to day functions down the road so while it doesn’t come up often
in your coursework (in fact I believe it is only relevant for like a
single lab) it is still useful to learn.

To start please import the json module into your code, imports are
done as the first lines of code in a python script, we will learn
more about this in the next chapter so if it is unclear now don’t
fret, but there will be an example down below anyway. Once this is
done we can open the .json file like we normally do we can load our
file’s contents into a Python dictionary using the loads(x) method
(or you can use load(x) without having already parsed the file) we
can then make modifications like we would with a normal dictionary
and then finally using json.dump(x,y) we can return the modified
content to the json file.

See below for a proper example of this:

https://www.w3schools.com/python/python_file_handling.asp

import json

my_file = open("somefile.json", "rt")

contents = my_file.read()

json_content = json.loads(contents)

json_content["new"] = "old"

json.dump(json_content, some_other_file)

The following chart shows the different methods and what they do:

Method Description

json.loads(x) Takes a string x and returns an
object which is a Python
dictionary

json.load(x) Takes a file object and return an
object which is a Python
dictionary

json.dumps(x) Takes a Python dictionary x and
return a string formatted to the
JSON standard

json.dump(x,y) Takes a Python dictionary x and a
file object y and writes the
contents of x to y in JSON format

That wraps up JSON and as a whole files, if you wish to learn more
about JSON in Python you can view these wonderful resources: (Python
JSON (w3schools.com)); (Python - Difference Between json.load() and
json.loads() - GeeksforGeeks)

The next chapter focuses on importing different libraries to expand
the functionality of your programs, this includes your own files that
you write and wish to use in another file.

After the next chapter it becomes more content specific so please
view only those which you find relevant or interesting :)

https://www.w3schools.com/python/python_json.asp
https://www.w3schools.com/python/python_json.asp
https://www.geeksforgeeks.org/python-difference-between-json-load-and-json-loads/
https://www.geeksforgeeks.org/python-difference-between-json-load-and-json-loads/

Chapter 8: Introducing Python Libraries

While there is so much that is able to be done within Python, it is
often not necessary to reinvent the wheel. People have already taken
the time and energy to do certain things that we may find ourselves
also wanting to do, it may also be true that we have some code in
another file that we may wish to execute in our current file without
rewriting the code you wish to run.

This is where we can properly introduce the import statement, at the
top of the files we write we are able to write import statements that
allow us to effectively bring in outside code to use within our own
file. The following are all possible ways to import some module or
file in Python:

import my_module

import my_module as mm

from my_module import some_function # the wildcard, * ,is also acceptable

The first way imports all functions from my_module but when you need
to execute the function you’ll need to preface the function call with
my_module, for example:

my_module.some_function()

The second way does the exact same as the first except this time we
provided an alias, meaning when we wish to execute the function from
that module we can use the alias rather than the whole module name,
for example:

mm.some_function()

Finally, the third way is used to import specific functions from a
module, or if you use the wildcard you can import all of them, since
you have already specified the module specifically using the from
keyword you do not need to preface the function call with anything.

Personally, the third option is my go to whenever I am dealing with
my own code that I wrote, since I don’t need any namespace identifier
to tell me what the code is associated with. If I am already pretty
familiar with the module I am using code from I will use the second

option, I will also use this option if the module name is too long
and I want to save the keystrokes. The first option is reserved for
modules that I am relatively new to.

You are expected to import your own code from another file at least
once throughout the course, it may be in your best interest to do it
even if it is not required based on the circumstances.

The following are some examples of popular modules that people tend
to import and what their primary use cases are:

Module Description

pandas Used primarily for processing and
parsing large data sets
efficiently

numpy Used to provide more mathematical
and scientific computing options
as well as new object types

matplotlib Used to display simple graphical
information, such as images or
plots of data

These are three of the more well known libraries/modules that are
often used in Python programs, these will all be covered in their own
individual chapters, in fact unless I decide to add more content in
the future, this will make up all the remaining content in the
document. Pandas is the only module that has been explicitly used in
assignments in the past to my knowledge so I will go more in depth on
that module compared to the others but all of these were regularly
used in ENGL 1006 which is why I chose them to be included here. To
save space in the future chapters these are the common ways people
import these libraries:

import numpy as np

import pandas as pd

import matplotlib as plt

Chapter 9: Pandas

I won’t even try to sugar coat anything here, I really do not like
pandas, I am not someone who deals with data crunching that much so I
tend to avoid it but for purposes of this document and probably my
labs/office hours I have to use my brain and teach it :)

To start, in the file you wish to work in you’ll need to import
pandas and load up your .csv file (this is the file format we will be
working with) you can see an example below:

import pandas as pd

data_frame = pd.read_csv('data.csv')

This is one of the two main data structures within Pandas, the other
being a series, you’ll be using data frames a lot so it is best we
get used to loading them up like the above.

It is important to note that you may have to install pandas before it
will let you do anything, open up the command prompt or terminal and
run one of the two commands:

conda install -c conda-forge pandas
pip install pandas

If none of these work, please consult with a member of the teaching
staff!

Moving on from that, to describe it briefly, a series is like a
column in a table, it is a 1-dimensional array that holds a specific
type of data. Accessing these elements depends on the index:

a = [1, 7, 2]

my_var = pd.Series(a)

print(my_var[0])

OR

my_var = pd.Series(a, index = ["x", "y", "z"])

print(my_var["y"])

For our purposes, you’ll most likely end up doing it the normal way
(0-based indexing) unless specifically asked otherwise. From this we
can gather that a data frame is effectively an array of series! So
now you can picture it like any other table you’ve seen in your
entire life.

By default a data frame will use 0 based indexing, to get a specific
row of the data frame the method we choose can depend, if we wish to
get it strictly by 0 based indexing, we use .iloc(x) if we wish to go
off a specific label (which may be 0 based indexing) we use .loc(x)

Overall .loc(x) is more powerful than .iloc(x) so use it when you can
but for purposes of 1002, you will not be penalized for using your
preference assuming they return the same correct result. To learn
more about .loc(x) vs .iloc(x) please view the following resource:
(Difference between loc() and iloc() in Pandas DataFrame -
GeeksforGeeks)

We can use the .head(x) and .tail(x) methods to quickly view the
first x or the last x rows within the data frame, we can also use
methods like .info() and .describe() to retrieve more information
about our data set as a whole.

If you do not like the default indexing provided you can change the
indexing to index by a column within your data we can use the
set_index(x, inplace=True) method. With x being the name of your
column as a string. We use inplace=true because we wish to modify our
existing dataframe rather than make a new one.

We are also able to reduce our dataframe using some criteria, say in
our csv file from earlier we have an column detailing the literacy
rates of countries and we only want to deal with countries with a
literacy rate of 80 or higher than we would use the following line of
code to store that:

high_lit_rate_df = data_frame[data_frame["literacy rate"] >= 80]

We also have tools that enable us to remove data that may not be
complete by using the .dropna() method on the data frame to remove
any rows that are missing some data. If we wish to do this for only a

https://www.geeksforgeeks.org/difference-between-loc-and-iloc-in-pandas-dataframe/#
https://www.geeksforgeeks.org/difference-between-loc-and-iloc-in-pandas-dataframe/#

specific row, we use a similar technique as the line of code above
but rather than >= 80 we will do the following:

full_lit_df = data_frame[data_frame["literacy rate"].isnull() == False]

If the situation comes up in which you may consider using either of
these, please make sure you won’t be losing valuable data by asking a
member of the teaching staff to double check and they will give you
the go ahead on that matter.

That wraps up my discussion of pandas, this should definitely be
enough information to at least get you started with pandas, if you
are seriously considering doing anything related to data science then
you will want to read the chapter on matplotlib as data visualization
is a very important component to consider as well.

Below is a table discussing the important methods that I have
mentioned and what they do:

Method Description

.head(x) Retrieve the first x rows of the
dataframe

.tail(x) Retrieve the last x rows of the
dataframe

.loc[x] Retrieves the row by its label

.iloc[x] Retrieves the row by its position

.isnull() Returns True if there are some
missing values in the row,
otherwise False

.dropna() Returns a data frame that
contains only fully filled out
rows

Pandas is a very verbose module and has wayyyy more than I could
possibly discuss, you could write a whole textbook on pandas itself,
here is a link to the documentation: (pandas documentation — pandas
2.0.3 documentation (pydata.org))

https://pandas.pydata.org/pandas-docs/stable/index.html
https://pandas.pydata.org/pandas-docs/stable/index.html

Chapter 10: Numpy

Numpy is the most used computational library that python has to
offer, while there are others that are similar like sympy or scipy we
will focus on Numpy simply because it is used the most, has the most
to offer you at this stage, and in the event you become a CS major or
intend to minor you’ll need to take Discrete Math and/or
Computational Linear Algebra which make abundant use of numpy, while
also going more in depth on it as well.

We can make a numpy array, the primary data structure used with numpy
operations, in a very simple way:

import numpy as np #reminder that we can assign alias to our modules

#we can also make multidimensional arrays if we so wished

my_np_array = np.array([1,2,3])

print(my_np_array)

Numpy arrays have the property that if you add them or do any sort of
algebraic manipulation to them or between them you will see the
effects as you would probably expect which is not a normal function
of regular python lists:

print(2*my_np_array) #yields [2,4,6]

print(2*[1,2,3]) #yields [1,2,3,1,2,3]

Since most of the usefulness of numpy comes from its applications in
mathematical and scientific fields I will simply provide a list of
useful numpy methods and what they do and close the lid on numpy,
here is the link to the documentation if you want to take a look for
yourself: (NumPy documentation — NumPy v1.25 Manual)

Please note that you will most likely not be required to use numpy
for any operation throughout the course but the option exists
assuming it provides you with the correct result and does not heavily
abstract the algorithmic complexity of the assignment.

https://numpy.org/doc/stable/index.html

Method Description

np.array(x) Converts a python list x into a
numpy array

np.dot(x,y) Returns the dot product of x and
y

x.shape Returns the dimensions of a numpy
array x

x.max(), x.min(), x.mean(),
x.std()

Returns the maximum, minimum,
average, and standard deviation
of a numpy array x

np.zeros((x,y)) Returns the 0 matrix of dimension
x by y

np.ones((x,y)) Returns the 1 matrix of dimension
x by y

np.eye((x,y)) Returns the identity matrix of
dimension x by y

np.arange(x) Returns a 1-dimensional
containing the numbers in the
range [0, x)

np.vstack([x,y]) Returns a new numpy array
containing the elements of x on
top of the elements of y

np.hstack([x,y]) Returns a new numpy array
containing the elements of y to
the right of the elements of x

This is only a fraction of the stuff that numpy can do too! These are
just the ones I felt provide the best introduction to numpy, as I had
said previously you may want to check out the lengthy documentation
in order to find even more methods to use and how they operate and
the kinds of arguments they take in!

The last library that we will be discussing in a bit of depth is
matplotlib which allows us to plot graphs and images

Chapter 11: Matplotlib

Matplotlib is one of the oldest data visualization libraries that
Python has to offer, and it is not the only one but it is often used
in conjunction with numpy so that is what we will be doing here
throughout the examples. In particular, I will demonstrate how to
generate three types of figures, a line chart, a scatter plot and a
bar graph.

Of course there are more of these available and the particular
technique used to do them varies, at the end of the chapter I will
provide a link to the documentation so you can read about all the
different things that Matplotlib can do for you!

First we are gonna make the necessary imports:

import matplotlib.pyplot as plt

import numpy as np

Once we have imported these two we can make the data and then plot a
line chart:

make data

x = np.linspace(0, 10, 100)

y = 4 + 2 * np.sin(2 * x)

plot

plt.plot(x,y)

plt.show()

This plots the graph of y = sin(2x) from 0 to 100 in increments of
10.

If we want to do a scatter plot instead, then we would change the
following:

plt.plot(x,y) -> plt.scatter(x,y)

And if we wanted to make a bar graph instead we would make the
following change:

plt.plot(x,y) -> plt.bar(x,y)

Those are the plain defaults but we are able to make other changes as
well for example we can change the color from its default blue with
the following addition:

plt.plot(x,y, color="red")

For the bar graph we can make adjustments to things like the width of
the bars and their edge color with the following changes:

plt.bar(x, y, width=1, edgecolor="white", linewidth=0.7)

Finally with scatter plots we are able to change the sizes of each of
the dots by adding the attribute like so:

np.random.seed(3)

x = 4 + np.random.normal(0, 2, 24)

y = 4 + np.random.normal(0, 2, len(x))

sizes = np.random.uniform(15, 80, len(x))

plt.scatter(x,y, s = sizes)

There are plenty of more examples provided along with the
documentation to learn more about matplotlib available at the
following link: (Matplotlib — Visualization with Python) Your use of
matplotlib may vary depending on the context you are enrolled in, I
would assume a context like art may make more use of visualizations
than something like linguistics.

Matplotlib is used in plenty of other courses as well, if it has
Python involved matplotlib is not far behind. ENGL 1006, COMS 3203,
COMS 3251 and more all make use of matplotlib in coursework and other
assignments in the event you choose to enroll in any of those
courses.

Matplotlib is not limited to data visualization either, you can use
your knowledge of file handling to display and modify images as well!
A common use case is to show off encryption and decryption of images.
That was one of my last assignments in ENGL 1006 and it was a festive
picture that resulted from the decryption :)

https://matplotlib.org/

Chapter 12: Conclusion

Well you made it to the end of the document, if you actually made it
this far then congratulations I sincerely hope that you were able to
learn something new along the way. While this document will be posted
within the course files there will be some files that will not be
there immediately to begin with and will be gradually introduced as
the need arises or as I see fit.

Your reward is access to more materials that compliment much of what
you have been working on as well as more concrete examples that you
can just download and run within your coding environment of choice,
in order to access this collection of files and other materials
please send me, Griffin Newbold, an email to request access and I
will send you the appropriate resource in response.

If you are reading this as a refresher after the course has concluded
then you are still welcome to email me and request access.

Of course this document may change as time moves forward, I may add
more chapters and other relevant information as I see fit, I will
continually update the document as these changes occur but for now
this is all I have for you, I appreciate your time in reading this
and I really hope you found it somewhat useful. If you have any
questions feel free to email me or stop by my office hours!

